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Abstract
One of the most serious problems caused by eutrophication of shallow lakes is the disappearance of submerged
macrophytes and the switch to a turbid, phytoplankton-dominated state. The reduction of external nutrient loads
often does not result in a change back to the macrophyte-dominated state because stabilising mechanisms that cause
resilience may delay a response. Additional internal lake restoration measures may therefore be needed to decrease the
concentration of total phosphorus and increase water clarity. The re-establishment of submerged macrophytes
required for a long-term stability of clear water conditions, however, may still fail, or mass developments of tall-
growing species may cause nuisance for recreational use. Both cases are often not taken into account when restoration
measures are planned in Germany, and existing schemes to reduce eutrophication consider the topic inadequately.
Here we develop a step-by-step guideline to assess the chances of submerged macrophyte re-establishment in shallow
lakes. We reviewed and rated the existing literature and case studies with special regard on (1) the impact of different
internal lake restoration methods on the development of submerged macrophytes, (2) methods for the assessment of
natural re-establishment, (3) requirements and methods for artificial support of submerged macrophyte development
and (4) management options of macrophyte species diversity and abundance in Germany. This guideline is intended to
help lake managers aiming to restore shallow lakes in Germany to critically asses and predict the potential
development of submerged vegetation, taking into account the complex factors and interrelations that determine their
occurrence, abundance and diversity.
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Introduction

One of the most serious problems caused by
eutrophication of shallow ponds and lakes is the
disappearance of submerged macrophytes and switch
to the turbid, phytoplankton-dominated state (Scheffer,
1989; Scheffer, Hosper, Meijer, Moss, & Jeppesen,
1993). The decline of submerged macrophytes in shallow
lakes in Denmark (Sand-Jensen, Riis, Vestergaard, &
Larsen, 2000), Great Britain (Moss, 1980), Sweden
(Blindow, 1992) and The Netherlands (Best, De Vries, &
Reins, 1984) has been well studied. However, in
Germany, comprehensive studies on the extent of the
decline in submerged macrophyte abundance due to
eutrophication are lacking. Körner (2002a) reported a
low abundance of submerged macrophytes in 66% of
100 investigated lakes in Brandenburg in the 1990s. A
change back to the clear, macrophyte-dominated state in
response to the reduction of external nutrient loads is
often delayed by stabilising mechanisms that cause
resilience. Macrophyte recolonisation can be hampered
due to enhanced turbidity, enhanced sediment re-
suspension, grazing by herbivorous birds, disturbance
by fish or lack of viable propagules in the sediment
(Jeppesen et al., 1991, 1999; Körner, 2001; Körner &
Dugdale, 2003; Ten Winkel & Meulemans, 1984; Van
den Berg, Scheffer, Coops, & Simons, 1998). A delayed
response of submerged macrophytes after reoligotro-
phication has been reported, e.g. in a study comparing
35 temperate lakes (Jeppesen et al., 2005) and in a study
on 100 Brandenburg shallow lakes (Körner, 2002a). In
contrast, undesired spontaneous re-establishment or
colonisation of submerged plants often occurs in
shallow lakes after reduction of external nutrient
loading, changes in the water regime or fish stock. The
possibility of natural and uncontrolled development is
mostly ignored in the management of shallow lakes.
Dense stands of aquatic vegetation may cause nuisance
for boating, swimming and other recreational use (Van
Nes, Scheffer, Van den Berg, & Coops, 2002).

In Germany, both the desired and undesired establish-
ment of submerged plants are often not taken into
account when restoration measures are planned. Deci-
sion support schemes to assess the potential develop-
ment of submerged vegetation, comparable to those
available for manipulation of fish communities (Mehner
et al., 2004) or for control of the internal P cycle
(Schauser, Lewandowski, & Hupfer, 2003), are lacking.
Although information on macrophyte development is
available (Brouwer, Bobbink, & Roelofs, 2002; Moss,
Madgwick, & Phillips, 1996a), existing decision schemes to
reduce eutrophication (e.g. Rast & Holland, 1988;
Schauser et al., 2003) often consider the topic inadequately.

In order to support lake managers aiming to restore
shallow lakes in Germany, we reviewed and rated the
existing approaches described in the literature and
developed a step-by-step guideline to assess the chances
of submerged macrophyte re-establishment. While
shallow lakes are traditionally defined either by a certain
mean depth (e.g. o5m, Jeppesen et al., 1990) or
polymictic conditions (LAWA, 1998), we here consider
all lakes in which submerged macrophytes play a
significant role for the stabilisation of clear-water
conditions. We consider the impact of different internal
lake restoration measures on the development of
submerged macrophytes, and also summarise case
studies on the artificial support of submerged macro-
phyte colonisation in Germany.
Guideline for assessing the chances of

macrophyte re-establishment in shallow lakes

Restoration measures to decrease turbidity in

degraded shallow lakes

The initial steps for the development of a restoration
strategy are the definition of goals, and the accurate
identification of the problems associated with a certain
water body. Pilot surveys are necessary to define the
current and the best possible state under optimal but
realistic conditions reflecting current land and water use.
Since the turbid, phytoplankton-dominated state is
often caused by excessive total phosphorus (TP)
concentrations, an external TP load reduction is in the
majority of cases the essential prerequisite for turbidity
to fall below a threshold value specific for this lake. But
internal feedback loops in eutrophic systems, such as
nutrient release from sediments and long water residence
times, maintain high phytoplankton production even
after loading is curtailed. Therefore, additional internal
measures (Cooke, Welch, Peterson, & Nichols, 2005)
can help to shorten the relaxation time after external P
load reduction and to compensate undesirable effects of
insufficient reduction of external load. Common internal
restoration measures for shallow lakes aiming at an
increase of the water clarity include measures with and
without a decrease of the TP concentrations (Table 1).

The choice of an appropriate internal restoration
measure in the first instance requires detailed knowledge
of the lake and vegetation type to be restored. The
majority of lakes (and therefore of available literature
on restoration measures) in Germany are eutrophied,
alkaline lakes. Dystrophic (peat) lakes are typically
mildly acidic, brownish in colour with high levels of
dissolved organic substances associated with leaching
from adjoining peat vegetation in the catchment. The
typical vegetation consists of Sphagnum spp., Nym-

phaeaceae and Utricularia spp. Characteristic macro-
phytes in soft water lakes have an extensive root system
and short rosette leaves, e.g. Littorella uniflora and
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Table 1. Common measures for increasing water clarity in shallow lakes (for selection criteria see Schauser et al., 2003) and

potential effects on the development of submerged macrophytes (X: increased transparency by a decrease of phytoplankton density,

* not applicable in polymictic lakes)

Restoration measure Positive effects on macrophytes Negative effects on macrophytes

With decrease

of TP

Increase of

P-export

External lake water

treatment

X

Dilution X

Sediment removal Decreased resuspension,

Exposure of deeper seed banks,

Improved plant fixation

Elimination of propagules

Increase of

P-retention

Sediment coverage Decreased resuspension Prevention of germination

Precipitation X pH changes

Oxidative measures* X Mechanical disturbance

Without decrease of TP Biomanipulation X

Destratification* X
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Isoetes lacustris. In such lakes, sediment dredging and
the recovery of the original level of alkalinity seem an
essential prerequisite to restore the original vegetation
(Roelofs, Brouwer, & Bobbink, 2002).

Although wind stress and sediment conditions may
also limit the distribution of submerged macrophytes
(Schutten, Dainty, & Davy, 2005), light is the most
important factor in eutrophic alkaline lakes (Duarte &
Kalff, 1986; Van den Berg, Joosse, & Coops, 2003). In
general, all internal measures that result in an improve-
ment of the light conditions should therefore have
positive effects on the development of macrophytes.
Some measures, however, might also have negative
effects, like sediment removal and coverage, inactivation
of phosphorus and oxidative measures (Table 1). To our
knowledge, a systematic assessment of the potential
effects of internal measures on the development of
submerged macrophytes is lacking (some information is
available in Moss et al., 1996a and Roelofs et al., 2002).

Dredging is often used to increase the P export from
the system and to shorten the response time to a
decreased external P loading. Furthermore, dredging
may decline turbidity by reduced resuspension of
unconsolidated sediments and stop the aggradation of
very shallow lakes. Sediment removal can affect the
macrophyte colonisation in different ways. Beside
improved light conditions the removal of water rich
sediment layers increases the stability of substrate for
rooted macrophytes. Moss, Stansfield, Irvine, Perrow,
and Phillips (1996b) state that macrophyte establish-
ment is seriously impaired if the eutrophicated sediment
layer is not removed completely. Otherwise, sediment
removal may also eliminate seeds, oospores and
vegetative reproduction units needed for a fast recolo-
nisation when clear water conditions recurred. Alter-
natively, sediment removal may reduce the sludge layer
above a viable, long-lived seed bank. Macrophyte
recovery from a relict seed bank depends on whether
buried seeds are positioned within their physical limits
of emergence, can receive germination cues, or are in a
physiological state to respond (De Winton, Clayton, &
Champion, 2000). De Winton et al. (2000) found viable
seeds in 15 cm sediment depth and in lakes with an
absence of submerged vegetation for 23 years. Removal
of accumulated sapropelium strongly stimulated the
germination of soft water macrophytes under experi-
mental conditions in shallow soft water lakes in The
Netherlands (Roelofs et al., 2002). Regeneration of soft
water macrophytes via seed bank can occur after 20–40
years of absence (Kaplan & Muer, 1990). New establish-
ment of other species, however, is relatively rare
(Roelofs et al., 2002). In Lake Beuven, a stable
community of soft water macrophytes was established
after reduction of external nutrient load and sediment
removal (Brouwer & Roelofs, 2001). Sediment dredging,
however, was often not successful in decreasing water P
concentration because the role of sediments as tempor-
ary P storage was overestimated in comparison to
external P sources (Annadotter et al., 1999).

Sediment capping, i.e. the physical or chemical
isolation of the sediment from the water to decrease
sediment P release, can be achieved by several methods
(e.g. gravel, plastic films, pulverised fly ash, calcareous
mud). These measures most probably have negative
effects on the development of submerged macrophytes
since a physical barrier buries propagules into deeper
sediment strata and prevents germination. The physical
capping by synthetic non-porous materials (fibreglass,
nylon sheets, polyethylene) is even used to restrict plant
development (Perkins, Boston, & Curren, 1980; Cooke
et al., 2005). Successful applications of physical barriers
for the decrease of P in water have not yet been
described.

Phosphorus inactivation in sediments by alum, iron or
lime applications is used to decrease TP in shallow lakes
(Boers, Van der Does, Quaak, & Van der Vlugt, 1994;
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Cooke et al., 2005; Deppe & Benndorf, 2002; Welch &
Cooke, 1999). Besides P input and available P in
sediments, the efficiency of the salts used for precipita-
tion depends on their stability under the given redox and
pH conditions in the sediment and in the lake water in
case of wind resuspension. Under anoxic conditions in
the sediment a part of iron bound P can be released
again by the microbial reduction of iron (III), whereas
aluminium bound P is stable under these conditions. In
case of resuspension P bound to aluminium and iron can
be mobilised by exchange against OH� ions, if the pH in
a productive water body is increased to 9–10. Addition
of slaked lime (Ca(OH)2) to hardwater lakes, however,
caused an immediate eradication of submersed aquatic
plants triggered by a short-term rise in pH (Chambers et
al., 2001; Reedyk, Prepas, & Chambers, 2001). Lime
addition may therefore not be the preferred measure in
cases where recolonisation is expected to occur from
scattered macrophyte stands that survived phytoplank-
ton dominated periods. Experimental studies on the
effect of alum or iron additions on the macrophyte
development are lacking. Sandrock, Scharf, & Dolgner
(2006) report successful re-establishment of submerged
macrophytes in three lakes in Mecklenburg-West
Pomerania after alum treatment. In Barleber See
(103 ha, mean depth: 6.7m, Saxony-Anhalt) macro-
phytes re-established after an alum treatment using
5.7mgL�1 Al3+ in 1986 (Rönicke, Beyer, Tittel,
Mätzold, & Ruschak, 1995). Alum mixed directly into
the sediment might be more toxic to submerged
macrophytes than applied to the overlying water. In
the stratified Groß-Glienicker See (67 ha, mean depth:
6.5m, Berlin), submerged macrophytes only recurred 7
years after a treatment with iron salts, although clear-
water conditions were immediately restored (Hilt, 2003).

Sediment oxidation includes the aeration with mole-
cular oxygen and the injection of Ca(NO3)2 into the lake
sediment to stimulate denitrification. Enhanced denitri-
fication can prevent the reductive dissolution of iron and
the subsequent release of iron bound P at the sediment
surface. Oxidative measures are often combined with
addition of ferric chloride to remove H2S and to form
Fe(OH)3. Long term effects of single molecular oxygen
or nitrate addition on the P cycle are not expected.
Effects of these treatments on the development of
submerged macrophytes including the mechanical dis-
turbance during application are rare. In the shallow
urban lake Old Danube in Vienna (Austria), macro-
phytes were still absent in large areas of the lake after
Riplox treatment, i.e. the addition of FeCl3 buffered
with limestone and Ca(NO3)2 (Dokulil, Teubner, &
Donabaum, 2000). Only a drawdown of the water level
by 30 cm resulted in a successful recolonisation (Dona-
baum, Pall, Teubner, & Dokulil, 2004). Water level
drawdowns in early spring are very efficient to increase
light availability for submerged macrophytes (Coops &
Hosper, 2002). Depending on lake morphometry and
transparency, drawdowns by 30–60 cm might be suffi-
cient to foster macrophyte development.

Biomanipulation can be very efficient to increase
water transparency, i.e. in The Netherlands in 90% of
all cases (Meijer, De Boois, Scheffer, Portielje, &
Hosper, 1999). Long-term stability of the clear-water
state can only be expected below certain critical nutrient
levels, which depend especially on lake size and depth.
Jeppesen et al. (1990) suggested critical TP levels of
0.08–0.15mgP l�1. Lauridsen, Jensen, Jeppesen, and
Søndergaard (2003) concluded that at least the short
term potential of macrophyte recolonisation after
nutrient loading reduction is higher in biomanipulated
lakes than in lakes subjected to loading reduction only.
Hosper & Meijer (1993) developed a simple test to assess
the chances for clear water following fish stock
reduction. In the Swedish Lake Finjasjön a 5-year
inefficient dredging was stopped. Only the combination
of further external P reduction and a food web
manipulation led to increased light transparency and
resulting increase of submerged macrophyte coverage
from 1% to 20% within 3 years (Annadotter et al.,
1999).
Size of lake area potentially covered by submerged

macrophytes

When a method has been chosen to increase the light
availability, the second question will be to which extent
the turbidity should be decreased (Fig. 1).

It is still not solved how much area of a shallow lake
has to be covered with submerged macrophytes to
maintain clear-water conditions. In general, submerged
macrophyte colonisation is described by percentage
bottom coverage and/or plant volume inhabited (PVI),
including the relative height of macrophyte stands
compared to the water level. Following Reynolds
(1994), 450% coverage are needed for a successful
biomanipulation, Canfield et al. (1984) found major
reductions in chlorophyll a and higher transparencies at
a PVI of 430% and Meijer et al. (1999) as well as
Norlin, Bayley, & Ross (2005) stated that low algal
biomass coincided with a macrophyte coverage of more
than 25% of the lake surface area. Portielje & Van der
Molen (1999) even report reductions of chlorophyll a at
5–10% coverage.

The area distribution of submerged macrophytes is
regulated by the lake morphology and their maximum
colonisation depth (zc), defined by water column light
attenuation and minimum light requirement for growth
(Canfield, Langeland, Linda, & Haller, 1985; Chambers
& Kalff, 1985). Also other parameters like grazing
pressure, substrate type and epiphyte shading can affect
zc (Middelboe & Markager, 1997). Depth limits of
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(1) Decrease turbidity?

(3) Natural development of
submerged macrophytes? 

(8) Management options of
biomass/coverage? 

 

Turbid water without
submerged macrophytes 

Stable clear water with
submerged macrophytes  

(5) Desired species
(diversity)?

(6) Control of desired
species development? 

(2) Potentialy colonised area sufficient for maintaining clear
water

(4) Arttificial colonisation
feasible?

(7) Conflicts with lake users?

Fig. 1. Graphical presentation of the step-by-step guideline.

The numbers in the boxes correspond to the numbered

chapters in the text. Black arrows indicate ‘‘yes’’, hatched

arrows ‘‘no’’.
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submerged macrophytes differ between growth forms:
In lakes with Secchi disc transparencies (zs)o4m, zc can
be calculated as zc ¼ K+a*zs with a ¼ 1.19, 0.95, 0.38
and K ¼ 0.17, 0.37 and 0.88 for charophytes, caulescent
and rosette-type angiosperms, respectively (Middelboe
& Markager, 1997). Provided the depth profile of the
lake is known, the required Secchi disc transparency to
achieve a certain macrophyte coverage can be calcu-
lated, i.e. using a scheme offered on the homepage of the
Dutch Shallow Lakes Network (www.shallowlakes.net/
handboek/modellen/index_modellen.html). A good pre-
diction, however, remains difficult as models forecasting
the dynamics of macrophytes based on transparency,
water depth, exposure and sediment type showed that
sites without macrophytes can be correctly predicted but
not those with vegetation (Scheffer, De Redelijkheid, &
Noppert, 1992). Examples of maximum macrophyte
colonisation depths for 220 lakes in North eastern
Brandenburg are given in Mauersberger & Mauersber-
ger (1996).

In large, wind-exposed lakes, instable sediments and
strong resuspension can prevent the re-establishment of
submerged vegetation (Hamilton & Mitchell, 1996;
Schutten et al., 2005). Phytoplankton dominance
promotes the accumulation of highly organic, unconso-
lidated sediments with low cohesive strength, a factor
affecting the distribution and abundance of submerged
macrophytes that has been largely neglected (Schutten
et al., 2005).
Natural development of submerged macrophytes

If the water transparency potentially allows a
significant macrophyte coverage (50% can be used as
a conservative value), the next question should be
whether submerged vegetation can develop naturally
from a propagule bank, remaining macrophyte stands
or by naturally introduced propagation units (Fig. 1).
The presence, density and composition of a seed bank
can influence the rate and extent of vegetation establish-
ment (De Winton et al., 2000). The number of
macrophyte propagules in the sediment has to be
estimated and their viability tested when the lake has
been free of macrophytes for a period longer than 20
years (De Winton et al., 2000). Propagules seem to be
able to survive rather long periods in the sediment. Van
den Berg and Delauney (www.shallowlakes.net) devel-
oped a model calculating the chance of submerged
macrophyte occurrence based on the relationship
between seed bank biomass and light availability using
data from five Dutch shallow lakes (chance of appear-
ance of submerged plants C ¼ exp(0.116%lZB�0.99)/
1+exp(0.116%lZB�0.99, with ZB: biomass of seed
bank (gm�2), %l: light availability as percent of incident
light at the water surface, %l ¼ 100e�z�k, z: water depth
(m) and k: attenuation (m�1)). Based on this relation-
ship, a calculation scheme (also considering fetch and
sediment conditions) is offered. Under certain circum-
stances, large-scale establishment of submerged macro-
phytes seems possible independently of a viable seed
bank. In Steinhuder Meer, a large (29 km2) and shallow
lake (mean depth 1.4m) in Lower Saxony, macrophytes
re-established in 1999 after a sudden increase of water
transparency approximately 40 years after their disap-
pearance (Poltz & Schuster, 2001). The vegetation was
dominated by Elodea nuttallii, a species that never
occurred in that lake before and spreads mainly by
vegetative fragments.

Germination of macrophyte seedlings from seed or
overwintering buds/turions may also be hampered by
the presence of reducing sediments and consequent high
production of sulphides and ammonia (Perrow, Moss, &
Stansfield, 1994). No general threshold levels can be
given for sediment quality parameters. When a negative
impact is expected, experimental tests of the sediment
suitability by planting test species are recommended.

Next to the lack of propagules and unsuitable
conditions for germination, herbivory might delay
recolonisation. Especially during the recolonisation
phase after oligotrophication, submerged vegetation is
susceptible to damage by naturally occurring fish and
waterfowl (Körner, 2001; Körner & Dugdale, 2003;
Körner, Schreiber, & Walz, 2002; Marklund, Sandsten,
Hansson, & Blindow, 2002; Søndergaard, Bruun,
Lauridsen, Jeppesen, & Madsen, 1996). A number of
macroinvertebrates ingest macrophyte tissue (Lodge,

http://www.shallowlakes.net/handboek/modellen/index_modellen.html
http://www.shallowlakes.net/handboek/modellen/index_modellen.html
http://www.shallowlakes.net
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1991; Newman, 1991), but they seem to have the
smallest impact among herbivores (Lodge, Cronin,
Van Donk, & Froelich, 1998). In German shallow lakes,
mainly mute swans (Cygnus olor), coot (Fulica atra), rudd
(Scardinius erythrophthalmus) and grass carp (Ctenophar-

yngodon idella) are known to feed on submerged
macrophytes, but also roach (Rutilus rutilus) and ide
(Leuciscus idus) seem to eat significant amounts of plant
material (Prejs, 1984). Common carp (Cyprinus carpio)
and bream (Abramis brama) do not eat the plants directly
but uproot plants by sediments sucking (Crivelli, 1983).
Young roach and perch (Perca fluviatilis) were found to
pluck parts of leaves while searching for invertebrates in
the periphyton (Körner & Dugdale, 2003).

Gross, Feldbaum, & Choi (2002) report substantial
damage of apical meristems of Potamogeton perfoliatus

and Myriophyllum spicatum in the littoral zone of Lake
Constance by herbivorous moth larvae (Acentria ephe-

merella, Pyralidae, Lepidoptera). In order to test
whether herbivory prevent the re-establishment of
submerged macrophytes, exclosure cages have to be
installed at suitable sites in the lake at the beginning of
the growing season (usually at the end of April) and the
biomass development has to be compared with that of
unprotected areas. The use of protective exclosures as a
restoration tool has been reported (see ‘Methods for
artificial support of macrophyte development’), how-
ever, no experience exists for their large-scale use,
probably due to high costs for material, installation
and maintenance and difficulties such as filamentous
algal growth and interference with recreational use.

Methods for artificial support of macrophyte

development

If a natural development of sufficient macrophyte
cover cannot be expected immediately after the return to
clear-water conditions, methods for an artificial support
of macrophytes might be considered (Fig. 1). In general,
we consider that submerged vegetation will naturally
develop sooner or later when the conditions in the lake
are suitable. The more cost and maintenance intensive
artificial support by planting or seeding of submerged
plants seems useful if
1.
 viable propagation units of submerged vegetation are
lacking in the sediment and no remaining stands of
any submerged species are present in shallower parts
of the lake or water bodies connected to the lake,
2.
 the restoration method only decreased turbidity for a
rather short time period, and long-term clear water
conditions would require the immediate stabilisation
by submerged macrophytes,
3.
 the restoration method included the introduction of
pike (Esox lucius) that need submerged macrophyte
stands for successful development or
4.
 the promotion of specific (low growing) macrophyte
species in particular areas of the lake is required to
enable recreational use.

Potential negative effects preventing a successful
colonisation like unstable or otherwise unsuitable
sediments, waves or currents, herbivory or water level
fluctuations should be assessed prior to any planting or
seeding (see ‘Natural development of submerged macro-
phytes’). If the establishment of submerged macrophytes
is impossible, neither naturally nor with support, a long-
term maintenance of clear-water conditions might not
be possible in the lake in question (Fig. 1).

Suitable species

Suitable plant species for recolonisation measures
should be selected based on:
1.
 the lake type (alkaline, dystrophic, softwater),

2.
 the former vegetation of the lake,

3.
 species typically occurring in that type of water and

in the region,

4.
 the potential uses of the lake,

5.
 the suitability of the selected species for transplant-

ing/seeding,

6.
 habitat preferences of the selected species and

7.
 the potential origin/source of the plants/seeds.

In Germany, experience with the active planting or
seeding of macrophytes is limited (Table 3), although we
might have missed some cases. In Table 4, we compiled
examples based on literature (Cooke et al., 2005; Kadlec
& Wentz, 1974; Smart & Dick, 1999) and expert
judgement rather than on experimental trials. Species
with a high nuisance potential should not be used to
avoid predictable conflicts with lake users. Elodea spp.
are therefore generally not recommended. Callitriche

spp. are not mentioned due to common difficulties with
species determination.

Charophyte development might be especially desir-
able if an intensive recreational use is intended (see
‘Development of desired species’). The sexual reproduc-
tion of charophytes is oogamous. Oospores tolerate
temperature fluctuations and desiccation and thus
germinate even after decades (Krause, 1997). According
to De Winton, Casanova, and Clayton (2004) who
measured charophyte establishment from oospores in
lake sediments exposed to different light regimes,
germination under unfavourable light conditions not
supporting seedling growth may cause significant losses
to oospore banks. Asexual reproduction takes place by
means of (1) multicellular bulbils developed from the
lower nodes, (2) uni- or multicellular bulbils developed
on rhizoids, (3) protonema-like outgrowths from a node
or (4) fragmentation (Martin et al., 2003). Bulbils seem
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to be important for short term survival of an established
vegetation whereas oospores are adapted to long time
survival in a dormant state (Van den Berg, Coops, &
Simons, 2001).

Methods

Following Moss et al. (1996a) and Smart & Dick
(1999), planting of submerged macrophytes should be
carried out early in the season in sheltered bays in
depths not exceeding 1m and requires the following
three phases:
(1)
 trials using test species in small exclosures during the
first season,
(2)
 further protected plantation of successful species and
test of other species if needed during the second
season and
(3)
 natural propagation by sexual and vegetative repro-
duction.
Plants densities of 0.18–0.25 vegetative plant parts
m�2 (Cooke et al., 2005), ten 10 cm long fragments m�2

(Moss et al., 1996a) or 0.4–0.8 complete plants m�2

(Smart & Dick, 1999) are recommended. Planting is
rather work intensive and might ideally involve volun-
teers. At the moment, a number of trials using nets or
other rotting and non-rotting substrates that keep
planted macrophytes on the lake bottom are carried
out in Germany (Table 3 and see below). The initial
planting of various submerged macrophytes in Lake
Weißenstadt in 2003 using rotting nets and help from
volunteers or stake holders resulted in a coverage of
5–10% of the lake area in 2005 (Mapping TU Munich;
Morscheid, unpublished data). Rott (2005) planted
200m2 so-called ‘macrophyte islands’ with Myriophyl-

lum spp. and Chara contraria in a 25 ha lake in southern
Germany in 2002. One year later, the plants already
colonised 53,000m2, thus corresponding to more than
20% coverage, and a number of species, which had not
been planted, appeared in the lake. Plants repressed
benthic cyanobacteria that previously formed thick mats
on the sediment. Bolender, Prume, Steinhauser, and
Trottmann (2001) report the successful re-establishment
of Trapa natans after the introduction of nuts into
special protection enclosures. Van de Weyer (2005)
started trials for the reintroduction of the extinct Najas

flexilis in Poland using plants cultivated from viable
seeds from Polish sites or, in case of failure, plant
material or seeds from the UK or Scandinavia.

Different methods of charophyte establishment have
been applied in shallow lakes in The Netherlands
(www.shallowlakes.net/platform-ehm/index.html). Whole
plants and sediments rich in charophyte vegetative
propagules or oospores were used with different success.
Van den Berg et al.(2001) found that a closed canopy of
C. aspera only developed once an oospore density of
about 10,000m�2 was exceeded. Crawford (1979)
successfully ‘seeded’ C. vulgaris into farm ponds after
drainage and sediment removal by bulldozing. We
believe that the use of comparatively undemanding
species like C. contraria, C. vulgaris, C. globularis (syn.
C. fragilis) or Nitella mucronata might be most promis-
ing (Table 4). Establishing large, wintergreen species like
Nitellopsis obtusa or Chara tomentosa would in principle
be desirable, however, these species are not easily
propagating. Successful growth would thus be difficult
to accomplish. Evidence for the occurrence of Chara

spp. (probably C. contraria and C. globularis) in a
number of shallow lakes in Brandenburg was found for
the past 2000 years using palaeolimnological methods
(Hilt & Dilger, 2004). Plant material or sediments rich in
oospores should be gained from, e.g. fish ponds in the
surrounding at the end of winter or early spring
(www.shallowlakes.net) and inserted as early as possible
(Smart & Dick, 1999). Nature protection aspects and the
potential risk of transferring fish parasites, pathogens or
other undesired species should be considered. Again,
small-scale trials in exclosures should be carried out
prior to a large scale application. At the moment, several
trials using different charophytes attached to supporting
textile substrates are carried out in Germany (Table 3).

Development of desired species

If a natural development of submerged macrophytes
can be expected, the next question will be whether the
developing community will consist of desired or
nuisance species (Fig. 1). The development of sub-
merged macrophytes in eutrophic lakes is often re-
stricted to a few species and chance effects on a limited
suite of species (particularly monocultures) could easily
lead to a total collapse of plant populations (Perrow et
al., 1994). A diverse plant community is therefore highly
desirable. The species composition of a developing
macrophyte community, however, is even harder to
predict than the potential coverage. An assessment can
be made based on the propagule bank, remaining species
in the lake and species present in surrounding waters.
Depending on the use of the lake (see ‘Conflicts with
lake users’), some species such as low-growing char-
ophytes might be especially desired, whereas invasive
species, both native and non-natives, are less desired due
to their known potential to form mass developments
(see below).

Charophytes

For several reasons, a charophyte dominated vegeta-
tion represents the optimum state for most shallow
lakes:
1.
 Similar to aquatic angiosperms, a dense charophyte
vegetation enhances water clarity and reduces

http://www.shallowlakes.net/platform-ehm/index.html
http://www.shallowlakes.net
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phytoplankton growth. This effect is caused by
enhanced sedimentation and reduced sediment resus-
pension within charophyte meadows (Van den Berg
et al., 1998), efficient nutrient immobilisation (Blin-
dow, 1992; Kufel & Kufel, 2002) and possibly the
production of allelopathic substances (Hootsmans &
Blindow, 1994; Wium-Andersen, Anthoni, Christo-
phersen, & Houen, 1982).
2.
 A dense charophyte vegetation can lead to an
efficient long-term immobilisation of nutrients. In
calcium-rich lakes, both phosphorus and inorganic
carbon are precipitated above charophyte beds.
Phosphorus is co-precipitated with CaCO3 by bind-
ing in the crystal structure or sorption on mineral
particles, and thus efficiently removed from the water
column (Crawford, 1977; Kufel & Kufel, 2002). This
apatite-bound phosphorus is among the most inert
fractions of phosphorus in the sediments and not
released to the water column even under anaerobic
conditions (Boström & Pettersson, 1982). Addition-
ally, charophytes like higher submerged plants are
able to deliver oxygen to the sediment, thus
potentially enhancing nitrification/denitrification
processes and preventing iron-bound sediment phos-
phorus from being released to the overlying water
(Kufel & Kufel, 2002).
3.
 Many charophyte species are wintergreen and there-
fore possibly cause less oxygen-depletion in the lake
during winter than annual submerged plants.
4.
 In contrast to many submerged angiosperms, char-
ophytes rarely grow to the water surface in lakes
deeper than 1m and therefore hardly interfere with
boating and swimming activities in the lake. (In very
shallow lakes, however, charophytes can become a
far more efficient obstacle to boating and swimming
than most angiosperms.)
5.
 Many charophytes are heavily calcified. Therefore, in
contrast to most submerged angiosperms, charophyte
fragments sink to the lake bottom and do not bother
swimmers.

Data on efficient long-term recolonisation of
plankton-dominated shallow lakes with charophytes,
however, are sparse. Lake Krankesjön (Sweden)
shifted spontaneously from the turbid to the clear-water
state during 1985–1987. P. pectinatus was the first
submerged plant to expand, but was later replaced by
dense vegetation of C. tomentosa as well as C. rudis and
C. hispida covering about 50% of the lake area outside
the reed belts (Blindow, 2002). In The Netherlands,
Lake Veluwemeer and Lake Wolderwijd have been
affected by eutrophication in the late 1960s and 1970s.
In the 1990s, the vegetation changed following lake
restoration measures. The dominance of P. pectinatus

decreased, while charophyte meadows expanded over
the same time interval. The pattern of change in
macrophyte species composition was assumed to result
from changes in the underwater light climate (Coops &
Doef, 1996).

Exotic species

In Germany, aquatic non-native species did not yet
receive a lot of attention (but see www.aquatischeneo-
phyten.de), probably because they do not necessarily
replace the native community, but can increase the local
species diversity, as shown for Azolla filiculoides, Lemna

minuta, Myriophyllum aquaticum, Egeria densa and
Vallisneria spiralis that colonised River Erft (North
Rhine-Westphalia) due to the influx of geothermically
heated water (Hussner & Lösch, 2005). E. canadensis

and E. nuttallii are among the 30 most important
invasive species in Germany (www.floraweb.de/neo-
flora/handbuch.html), with E. nuttallii often replacing
E. canadensis (Barat-Sergretain, 2004; Kummer &
Jentsch, 1997; Vöge, 1995). Both species often become
a nuisance (Table 2, see below). E. nuttallii rapidly
spread to 4 km2 within 1 year along the shores of the
deep oligotrophic surface mining lake Goitsche (Sax-
ony-Anhalt) (Rönicke, Angelstein, Schultze, & Geller
2006). In a number of reservoirs of the river Ruhr, E.

nuttallii developed extensively since 2000 and caused
problems with uses for recreation, drinking water supply
and hydropower (Podraza, unpubl. data). In Steinhuder
Meer, E. nuttallii spread from 500 ha in 2001 to 1500 ha
in 2002 (approximately 50% of the lake area) and
disappeared completely in spring 2003 after overwinter-
ing under ice (Poltz, unpublished data). Crassula helmsii,
invasive from Australia and New Zealand, developed
dense stands in a few lakes in North Rhine-Westphalia
and other northern federal states (Büscher, Raabe, &
Wentz, 1990; Hussner, personal communication), but
seems not to spread as rapidly as in England (Hussner,
personal communication). In contrast, Hydrocotyle

ranunculoides is expected to potentially spread rapidly
to the western parts of Germany from initial stands
reported in North Rhine-Westphalia in 2004 (Hussner &
Van de Weyer, 2004; Hussner, Van de Weyer, &
Wiehler, 2005). Myriophyllum heterophyllum was re-
ported from a number of lakes in North Rhine-
Westphalia and Lower Saxony and became a nuisance
in some cases (Table 2; Hussner, Nienhaus, & Krause,
2005).

Weeds

Pyšek et al. (2004) suggest the term weeds (harmful
species, problem plants, pests) for all species (not
necessarily exotic) that interfere with human objectives.
Although the problem might not be as severe as in
tropical and subtropical regions, several, also native,
aquatic macrophyte species have the potential to form
dense stands in shallow eutrophic lakes in Germany that

http://www.aquatischeneophyten.de
http://www.aquatischeneophyten.de
http://www.floraweb.de/neoflora/handbuch.html
http://www.floraweb.de/neoflora/handbuch.html
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Table 2. List of some submerged macrophyte species involved in mass developments that interferred with the anthropogenic use of

the lakes with examples (BB: Brandenburg, BA: Bavaria, BW: Baden-Wuerttemberg, LS: Lower Saxony, NRW: North Rhine-

Westphalia, SN: Saxony, SA: Saxony-Anhalt)

Species Native Examples

Ceratophyllum demersum X Karsee, Lengenweiler See (both BW)

Ceratophyllum submersum X Kersdorfer See (BB), Kleiner Nordfeldweiher (NRW)

Chara hispida X Unterföhringer See (BA)

Crassula helmsii Fühlinger See (NRW)

Elodea nuttallii/E. canadensis Steinhuder Meer (LS), Ruhrstauseen (NRW), Rottachspeicher (BA),

Schwarzenberger Weiher (BA), Goitsche (SN, SA)

Hydrocotyle ranunculoides Numerous small lakes in NRW

Lagarosiphon major Schwanensee (BA)

Myriophyllum spicatum X Knappensee (SA), Deisendorfer Weiher (BW)

M. heterophyllum Heider Bergsee, Schluchtsee, Willenhofer Maarsee (all NRW)

Najas marina s.l. X Neuendorfer See (BB)

Potamogeton pectinatus X Großer Weserbogen (NRW)

P. perfoliatus X Grüntensee (BA)

P. lucens X Sachsenrieder Weiher (BA)
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reach the water surface and potentially become mechan-
ical obstacles for boating and swimming (Table 2).
Interestingly, a number of species that are problematic
at some places are otherwise rated as rare and are
classified in the Red Data Books of several federal
states, like N. marina, P. lucens and Ceratophyllum

submersum (Korneck, Schnittler, & Vollmer, 1996). The
macrophyte-based assessment of lakes for the imple-
mentation of the European Water Framework Directive
in Germany ranks polymictic shallow lakes as moderate
(class 3) when the percentage of C. demersum, P.

pectinatus or E. nuttallii/E. canadensis of the total lake
area covered by submerged macrophytes is higher than
80% (Schaumburg et al., 2004; Stelzer, Schneider, &
Melzer, 2005). Regional differences, however, have to be
taken into account. In southern Germany, C. demersum

mainly occurs at highly eutrophic sites whereas in
Brandenburg this species is also abundant in meso-
trophic lakes (Hoesch & Buhle, 1996).
Management options for the development of desired

species

If a desired species composition cannot be expected,
e.g. due to the lack of a diverse seed bank, lack of viable
charophyte oospores or the presence of invasive species,
the question arises whether the growth of desired species
can be promoted and controlled (Fig. 1). One of the few
published examples is an attempt to shift a vegetation
dominated by P. perfoliatus to a C. aspera dominance in
Lake Veluwe in The Netherlands (Coops, Van Nes, Van
den Berg, & Butijn, 2002). Using the model CHAR-
ISMA (Van Nes, Scheffer, Van den Berg, & Coops,
2003), a mowing design with a mowing depth of 30 cm
above the sediment rather late in the vegetation period
has been developed. In Steinhöringer Badesee and
Bachtelweiher (Bavaria), polyethylene covers to prevent
growth of tall pondweeds and a subsequent introduction
of charophyte species as plant material or with textile
mats are applied to shift the present vegetation to
charophyte dominance (Table 3). Smart, Dick and
Doyle (1998) recommend planting of native species in
new water bodies to prevent a dominance of exotic
species which potentially have a faster colonisation rate.
Although herbivores such as the macroinvertebrate
Acentria or rudd (Scardinius erythropthalmus) and roach
(Rutilus rutilus) prefer certain macrophyte species over
others and therefore may change the community
composition within submerged macrophyte beds (Gross,
Johnson, & Hairston, 2001; Prejs, 1984), their controlled
use to change the species composition has not yet been
reported, seems rather difficult and time and cost
intensive.
Conflicts with lake users

The desired vegetation needs to be adjusted to the use
of the lake. Dense beds of tall-growing submerged
macrophytes can be a desired and suitable vegetation in
shallow lakes, but become a nuisance when lakes are
intensively used for boating, fishing or swimming.
Information of the public regarding the positive role
of submerged macrophytes in shallow lake ecosystems is
a first step towards acceptance of the macrophyte
development (Körner, 2002b). Still, the interests of
recreational users will often conflict with nature
conservation because an intermediate level of vegetation
biomass with an optimal benefit both for the ecosystem
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ä
h
lm

a
n
n
(S
T
F
I
e.
V
.,

C
h
em

n
it
z)
,
W
er
n
ek
e

(N
a
tu
rs
ch
u
tz
ze
n
tr
u
m

K
le
v
e)
,
B
o
rc
h
er
d
in
g
(U

n
i

K
ö
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Table 4. Potential of selected, recommended submerged macrophytes species for successful use for artificial colonisation in

eutrophic shallow lakes in Germany (S: seeds or comparable structure, F: foliage and stems, T: tubers or roots)

Species Potential

propagation

method

Susceptible to

herbivory

Nuisance

potential

Remarks

Ceratophyllum demersum F � Intermediate

Chara contraria, C. globularis (syn.

C. fragilis), C. vulgaris, Nitella mucronata

S, F +/� Low C. contraria and C. vulgaris

prefer calcium-rich lakes

Eleocharis acicularis F � Low

Myriophyllum spicatum, M. verticillatum F � High

Najas marina s.l. S � High two subspecies, do not occur in

all federal states

Potamogeton alpinus P. berchtoldii,

P. crispus, P. friesii, P. obtusifolius,

P. pusillus, P. pectinatus, P. perfoliatus

F, T + Intermediate

Ranunculus subg. Batrachium F � Intermediate Ranunculus trichophyllus only in

alkaline lakes

Zannichellia palustris ssp. palustris S + Intermediate

Data are based on Kadlec & Wentz (1974), Smart & Dick (1999), Cooke, Welch, Peterson, and Nichols (2005) and our own judgement. The choice of

species suitable for planting or seeding in a certain lake includes knowledge about the lake type (alkaline, dystrophic, softwater), the former

vegetation of the lake, species typically occurring in that type of water and in the region, the potential uses of the lake, the suitability of the chosen

species for transplanting/seeding, habitat preferences of the chosen species and the potential origin/source of the plants/seeds.
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and users may often not be feasible in shallow lakes
(Van Nes et al., 2002; Van Nes et al., 1999). This conflict
might be solved with trials to shift the vegetation to low-
growing Chara species that do not reach the water
surface (see ‘Methods for artificial support of macro-
phyte development’ and ‘Development of desired
species’) or a harvesting management of the tall-growing
vegetation.
Management options of biomass/coverage

If the lake ecosystem has alternative stable states,
harvesting (or other management options like biological
control) becomes risky because the vegetation may
collapse entirely below a certain, presently and practi-
cally unknown, biomass (Van Nes et al., 2002). The use
of carp or grass carp often results in a complete loss of
submerged macrophytes, like in Herrenwieser Weiher,
Bavaria (Morscheid, Mattukat, & Kucklentz, 2005), and
is therefore not recommended. In some federal states,
the use of grass carp is generally forbidden (Nature
Protection Acts of Berlin, Brandenburg, Lower Saxony,
North Rhine-Westphalia, Thuringia), but often this
species is still introduced to remove macrophytes. At
present, any biological control method using herbivor-
ous vertebrates or invertebrates seems inapplicable in
shallow lakes due to the risk of overexploitation and
switch back to the turbid, phytoplankton-dominated
state (Fig. 1). The use of herbicides is not allowed in
Germany. Although labour- and cost-intensive, me-
chanical mowing or harvesting seems the only measure
allowing a controlled elimination of part of the
macrophyte biomass. Cutting only, without collection
of plant fragments, should not be considered. Harvest-
ing removes biomass which otherwise will release
nutrients at senescence, and will contribute to an oxygen
depletion that may stimulate further nutrient release
from reduced sediments (Cooke et al., 2005). In
Harkortsee (140 ha, North Rhine-Westphalia) a harvest-
ing boat cleared 15 ha in 4 weeks. Costs for 4–5 people
working 10 hours a day summed up to 130,000 Euro,
which is approximately 115 Euro per ton fresh weight.
The local authority Wasserwirtschaftsamt Kempten
(Bavaria) estimated costs of mowing at 650–1000 Euro
per day including a mowing boat and two people. In
Rottachspeicher (Bavaria), a 35m deep reservoir
(300 ha), yearly costs for mowing E. canadensis/E.

nuttallii summed up to 19,000–25,000 Euro. In Grün-
tensee (130 ha, Bavaria) P. perfoliatus was mowed at
yearly costs of 3500–5500 Euro. Mowing will only be a
short-time relief since most nuisance species spread by
vegetative fragmentation and loose fragments easily
settle at new places and rapidly regain high biomass
(Abernethy, Sabbatini, & Murphy, 1996). Harvesting
might also remove herbivorous macroinvertebrates
living at the apical shoots of submerged plants (Sheldon
& O’Bryan, 1996). Remaining stands should still cover
50% of the lake (see ‘Size of lake area potentially
covered by submerged macrophytes’), but further
detailed studies are needed to investigate the coverage
needed to stabilise clear-water conditions. Populations
of E. canadensis and E. nuttallii were often reported to
collapse naturally, the possibility of such an event,
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however, is unwarranted as a ‘‘do-nothing’’ approach
sensu Simberloff & Gibbons (2004).
Conclusions

The choice of an appropriate internal lake restoration
measure should include an assessment of its potential
effects on the development of submerged macrophytes
to prevent failure of the restoration due to a lack of
macrophyte recolonisation or mass development.
Further research is needed to elucidate the effects of a
number of common restoration measures on the
development of submerged macrophytes.

Using the step-by-step guideline, an assessment of
potential chances and the degree of the development of
submerged macrophytes in degraded, turbid shallow
lakes after an increase of the light availability is possible.
However, due to the complex nature of factors
determining the occurrence, distribution and biomass
development of submerged macrophytes, predictions are
still limited.

As the re-establishment of submerged macrophytes is
essential for the long-term success of a restoration in
shallow lakes, measures for their support in case of a
hampered natural re-establishment and management
measures in case of mass developments should be
planned in advance of any restoration effort. Low
growing species, such as many Chara species, are the
desired vegetation for lakes with extensive recreational
use. Experience with measures to arrive at such a
sustainable vegetation, however, are limited and further
research is needed to find management solutions for
shallow lakes where mass developments of submerged
macrophytes result in conflicts with lake users. In future,
the number of lakes with problematic macrophyte mass
developments may increase in Germany as the reduction
of external nutrient loads may finally result in improved
conditions for macrophyte growth even in lakes without
additional internal measures.
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Süßwasserflora von Mitteleuropa 18. Jena, Stuttgart, Lü-
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präparaten auf das Makrophytenwachstum in
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Spieker, J. (1996). Nährstoffelimination durch submerse

Makrophyten – ein Konzept zur Renaturierung von

Feuchtgebieten. Deutsche Gesellschaft für Limnologie –

Tagungsbericht 1995 (Berlin), 774–778.

Stelzer, D., Schneider, S., & Melzer, A. (2005). Macrophyte-

based assessment of lakes – a contribution to the

implementation of the European Water Framework Direc-

tive. International Revue of Hydrobiology, 90, 223–237.

Ten Winkel, E. H., & Meulemans, J. T. (1984). Effects of fish

upon submerged vegetation. Hydrobiological Bulletin, 18,

157–158.

Van den Berg, M. S., Coops, H., & Simons, J. (2001).

Propagule bank buildup of Chara aspera and its signifi-

cance for colonization of a shallow lake. Hydrobiologia,

462, 9–17.

Van den Berg, M. S., Joosse, W., & Coops, H. (2003). A

statistical model predicting the occurrence and dynamics of

submerged macrophytes in shallow lakes in The Nether-

lands. Hydrobiologia, 506, 611–623.

Van den Berg, M. S., Scheffer, M., Coops, H., & Simons, J.

(1998). The role of characean algae in the management of

eutrophic shallow lakes. Journal of Phycology, 34, 750–756.

Van de Weyer, K. (2005). Re-establishment plan for the

Natura 2000 species Najas flexilis in Poland. Report

(www.lanaplan.de).

Van Nes, E. H., Scheffer, M., Van den Berg, M. S., & Coops,

H. (2002). Aquatic macrophytes: Restore, eradicate or is

there a compromise? Aquatic Botany, 72, 387–403.

http://www.lanaplan.de


ARTICLE IN PRESS
S. Hilt et al. / Limnologica 36 (2006) 155–171 171
Van Nes, E. H., Scheffer, M., Van den Berg, M. S., & Coops,

H. (2003). Charisma: A spatial explicit simulation model of

submerged macrophytes. Ecological Modelling, 159,

103–116.

Van Nes, E. H., Van den Berg, M. S., Clayton, J. S., Coops,

H., Scheffer, M., & Van Ierland, E. (1999). A simple model

for evaluating the costs and benefits of aquatic macro-

phytes. Hydrobiologia, 415, 335–339.
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